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Abstract. The application of the exact renormalisation group to symmetric as well as asymmetric many-
fermion systems with a short-range attractive force is studied. Assuming an ansatz for the effective action
with effective bosons, describing pairing effects, a set of approximate flow equations for the effective coupling
including boson and fermionic fluctuations has been derived. The phase transition to a phase with broken
symmetry is found at a critical value of the running scale. The mean-field results are recovered if boson-loop
effects are omitted. The calculations with two different forms of the regulator are shown to lead to similar
results. We find that, being quite small in the case of the symmetric many-fermion system the corrections
to mean-field approximation become more important with increasing mass asymmetry.

PACS. 21.65.+f Nuclear matter — 21.60.-n Nuclear structure models and methods — 68.18.Jk Phase

transitions — 73.22.Gk Broken symmetry phases

1 Introduction

There is a growing interest in applying the exact renormal-
isation group (ERG) formalism to few- and many-body
systems [1-3] when the underlying interaction is essen-
tially nonperturbative. Regardless of the details all ERG-
based approaches share the same distinctive feature, a suc-
cessive elimination/suppression of some modes, resulting
in effective interaction between the remaining degrees of
freedom. One specific way of implementing such a proce-
dure is to eliminate modes by applying a momentum-space
blocking transformation with some physically motivated
cutoff. The effect of varying a cutoff is described by non-
linear ERG evolution equations, which include the effect
of the eliminated modes. In the following we will use the
variant of ERG based on the concept of average effective
action (AEA) [4]. The corresponding evolution equation
can be written in the following general form:

ol = —% Tr [(0xR) (I'® — R)~? (1)
Here I'® is the second functional derivative of the AEA
taken with respect to all types of field included in the ac-
tion, and R is a regulator which should suppress the contri-
butions of states with momenta less than or of the order of
the running scale k. To recover the full effective action we
require R(k) to vanish as k — 0, in other respects its form
is rather arbitrary. The concrete functional form of the
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regulator has no effect on physical results provided no ap-
proximations/truncations were made. By solving the ERG
equations one can find a scale dependence of the coupling
constants and thus determine the ERG flow. The whole
approach is nonperturbative so that some physically mo-
tivated assumption about the functional form of the ef-
fective action should be made It is well known that the
many-fermion system with attractive interaction favours
the formation of the correlated fermion pairs leading to
the symmetry breaking and related phenomena. Since we
expect the appearance of the correlated fermion pairs in
a physical ground state, we need to parametrise our ef-
fective action in a way that can describe the qualitative
change in the physics when this occurs. A natural way to
do this is to introduce a boson field whose vacuum ex-
pectation value (VEV) describes this correlated pair [5]
and study the evolution of this effective degrees of free-
dom. At the start of the RG evolution, the boson field
is not dynamical and is introduced through a Hubbard-
Stratonovich transformation of the four-point interaction.
As we integrate out more and more of the fermion degrees
of freedom by running the cutoff scale k to lower values, we
generate dynamical terms in the bosonic effective action.
In this paper we treat both symmetric and asymmetric
many-fermion systems. The corresponding ansatz for the
boson-fermion effective action consists of the kinetic terms
for boson and fermions and the interaction term and for
two types of fermions it can be written as

Pk = [ ' (Talp, K + el K+ TilkD) . (2)
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Here I'p(r) is the boson (fermion) part of AEA,

I = o (2000t pa ) + 22 57) 6= U (6.6, ®

b
FF = Z’(/)J <Z¢,i(i8t + ,Uz) +
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and I7 is the interaction term,

i i
I't=-2, <§ Vi o9thadt — B ¢202¢2T¢> . (5)
M is the reduced mass of the fermion in vacuum and
the factor 1/2m with m = M, + M, in the boson ki-
netic term is chosen simply to make Z,, dimensionless.
The coupling Z,, the wave function renormalisations fac-
tors Zy ., and the kinetic-mass renormalisations factors
Zpm,m all Tun with &, the scale of the regulator. Hav-
ing in mind the future applications to the crossover from
BCS to BEC (where the chemical potential becomes neg-
ative) we also let the chemical potentials pu, and pp run,
thus keeping the corresponding densities (and Fermi mo-
menta pr;) constant. The bosons are, in principle, cou-
pled to the chemical potentials via a quadratic term in ¢,
but this can be absorbed into the potential by defining
U =U— (1 +p2)Zs¢'¢. The evolution equations include
running of chemical potentials, effective potential and all
couplings (Z4, Zm, Zm iy Zyi, Zg). However, in this paper
we allow to run only Zg4, parameters in the effective po-
tential (u's and py) and chemical potentials since this is
the minimal set needed to include the effective boson dy-
namics. The system with one type of fermion corresponds
to the limit M, = M.

We expand the effective potential about its minimum,
#Td = po, so that the coefficients u; are defined at p = po,

T(p) = o+ s (p=po)+ 5 walp=po) + 5 s p—po) 4+
(6)
where we have introduced p = ¢'¢. A similar expansion
can be written for the renormalisation factors. The coef-
ficients of the expansion run with the scale. The phase of
the system is determined by the coefficient u;. We start
evolution at high scale where the system is in the sym-
metric phase so that u; > 0. When the running scale
becomes comparable with the pairing scale (close to av-
erage Fermi momentum) the system undergoes the phase
transition to the phase with broken symmetry, energy gap
etc. The point of the transition corresponds to the scale
where u; = 0. The bosonic excitations in the gapped phase
are gapless Goldstone bosons. Note, that in this phase the
minimum of the potential will also run with the scale k& so
that the value po(k — 0) determines the physical gap.
The important part of any ERG treatment is the choice
of the regulator. Ideally, the physical results should not
depend on this choice. However, some sort of truncations
and approximations should always be made in real cal-
culations to render the system of the resulting evolution
equations solvable so that the convenient choice of the reg-
ulator is the question of significant practical importance.

735

In our approach the boson regulator has the structure
Rp =Rp dia‘g(lv 1)7 (7)

and the fermion regulator for both types of fermions has
the structure

Rr,i =sgn(ei(q) — i) Rr,i(q, pi, k) diag(1, —=1).  (8)

Note that this regulator is positive for particle states above
the Fermi surface and negative for the hole states below
the Fermi surface. The function Rp should suppress the
contributions of states with momenta near the Fermi sur-
face, |¢ — pr| ~ k. Once a large gap has appeared in the
fermion spectrum, there are no low-energy fermion exci-
tations and so the fermionic regulator plays little further
role. However, while the gap is zero or small, it is crucial
that the sign of the regulator matches that of the energy,
¢*/2M — p, and hence it is u which appears in the sign
functions.

The other important part of the ERG approach is fix-
ing the boundary conditions which define the form of the
AEA at some initial scale so that at some large starting
scale k = K we demand that the Lagrangian be equivalent
to a purely fermionic theory with the contact interaction,

L= —i Co (¢Taap™) (¥ T o91p) . 9)

Here Co(K) is the strength of the energy-independent
term in the effective NN interaction in vacuum. This is
evaluated at the scale K, using the same regularisation
procedure as we apply in matter. This equation implies
that u; and g at the this scale are related by

(10)

Using this boundary condition we can relate the pair-
ing phenomena in a many-body environment with the
fermion-fermion interaction in vacuum.

The boson potential U is obtained by evaluating the
effective action for uniform boson fields. It evolves accord-
ing to

U = 1 T, (11)
Vi

where Vy is the volume of spacetime. Substituting our ex-
pansion of U, eq. (6), on the left-hand side leads to a set
of ordinary differential equations for the w,,.

For the boson wave function renormalisation factor,
Zg, we need to consider a time-dependent background
field. Taking

¢(x) = ¢o +ne ", (12)

where 7 is a constant, we can get the evolution of Z; from

r)
n=0

Let us first consider the results of the calculations in the
case of symmetric fermion matter. We solve the evolution

O Zy = (13)

19 (8_23
Vi 0po \ Onont *

po=0
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equations numerically with two types of cutoff. First, we
use the smoothed step-function type of regulator (called
hereafter as Ryr):

k2 k?
RlF = mal(q—pp,k,a); RlB = %01(%]%0)7 (14)
where
1 q+k q—k
= f f
01(q, k,0) S erf(1/0) [er ( T )+er ( . )]

(15)
with o being a parameter determining the sharpness of the
step. Second, we use the sharp-cutoff function Rsr which
is somewhat similar to the one suggested in ref. [6] for the
pure boson case and chosen in a rather peculiar way to
make the calculations as simple as possible

2

Ror = ooz [((k+p)* = a")0(pu + & — )
+((k+pu)? + 6> —2p,)0(g —pu + k)], (16)
Rop = 2 (k2 — ¢)8(k — ). (1)

where p, = (2Mp)'/2. The fermion sharp cutoff consists

of two terms which result in the modification of the par-
ticle and hole propagators, respectively. The hole term is
further modified to suppress the contribution from the sur-
face terms, which may bring in the dangerous dependence
of the regulator on the cutoff scale even at the vanishingly
small k. As an example, we focus on the parameters rele-
vant to neutron matter: M = 4.76fm~', pr = 1.37fm~".
Let us first discuss the results obtained with the smooth
cutoff R;. We found that the value of the physical gap is
practically independent of either the values of the width
parameter o (varied within some range) or the starting
scale K provided K > 5fm™!. The results of the calcula-
tions are shown in fig. 1. At the starting scale the system
is in the symmetric phase and remains in this phase un-
til wq hits zero at keryy ~ 1.2fm~! where the artificial
second-order phase transition to a broken phase occurs
and the energy gap is formed. Already at k ~ 0.5 the run-
ning scale has essentially no effect on the gap. It is worth
mentioning that we found very small (on the level of 1%)
contribution to the gap from the boson loops, due to can-
cellations between the direct contributions to the running
of the gap and indirect ones via uy. The boson loops play
a much more important role in the evolution of us and
Zg. In fact, they drive both couplings to zero at & — 0.
We note however, that the effect of the boson loops for
the gap may still be more visible if the evolution of the
other couplings is included.

The results obtained with the sharp-cutoff regulator
are shown in fig. 2. One immediate observation is that
the results become starting scale independent as long as
K > 5fm~! similarly to the case with the smooth cutoff.
However, the artificial phase transition occurs at lower val-
ues of the running scale k ~ 0.7fm~!. At approximately
k ~0.2fm~! the value of the gap becomes scale indepen-
dent. One notes that the curves obtained with different
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Fig. 1. (Colour on-line) Numerical solutions to the evolu-
tion equations for infinite ap and pr = 1.37 fm, starting from
K = 16fm™!. We show the evolution of all relevant param-
eters for the cases of fermion loops only (orange/grey lines),
and of bosonic loops with a running Z, (blue/black lines). All
quantities are expressed in appropriate powers of fm™".
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Fig. 2. (Colour on-line) Evolution of the parameters when the
sharp cutoff is used.

regulators and describing the evolution of the gap, be-
ing rather different at intermediate scales, approach each
other with decreasing scale resulting in very close values
for the physical gap. This is an encouraging result taking
into account that, although the hypothetical exact results
must be independent of the choice of the regulator in prac-
tice it is not guaranteed given the assumed ansatz for the
effective action and truncations made. The same conclu-
sion also holds for the other quantities. The couplings Z,
and uo first grow with scale and then start decreasing
eventually coming to zero. The chemical potential begins
to decrease at the point of phase transition and becomes
scale independent at k ~ 0.2fm~!. However, in this case
the numerical values of the chemical potentials obtained
with different regulators differ by approximately 20% so
that this quantity is more sensitive to the details of effec-
tive action and to the trancations made.
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Fig. 3. Evolution of the gap in the MF approach (dashed
curve) and with boson loops (solid curve) in the unitary regime
a = —oo as a function of the mass asymmetry.

Let us now discuss the results for the many-fermion
system with two fermion species. For simplicity we con-
sider the case of the hypothetical “nuclear” matter with
short-range attractive interaction between two types of
fermions, light and heavy, and study the behaviour of
the energy gap as a function of the mass asymmetry. We
choose the Fermi momentum to be pr = 1.37fm~'. One
notes that the formalism is applicable to any type of a
many-body system with two fermion species from quark
matter to fermionic atoms so that the hypothetical asym-
metrical “nuclear” matter is simply chosen as a study case.
We assume that M, < M,, where M, is always the mass
of the physical nucleon.

First we consider the case of the unitary limit with the
infinite scattering length. The results of our calculations
for the gap are shown in fig. 3.

We see from this figure that increasing mass asymme-
try leads to a decreasing gap that seems to be a natural
result. However, the effect of the boson loops is found to
be small. We found essentially no effect in the symmetric
phase, 2-4% corrections for the value of the gap in the
broken phase and even smaller corrections for the chemi-
cal potential so that one can conclude that the mean-field
approach (MFA) indeed provides the reliable description
in the unitary limit for both small and large mass asym-
metries. It is worth mentioning that, similar to the above-
considered case of the fermion matter with one type of
fermion, the boson contributions are more important for
the evolution of us where they drive us to zero as k — 0
making the effective potential convex in agreement with
the general expectations. This tendency retains in the uni-
tary regime regardless of the mass asymmetry.

We have also considered the behaviour of the gap as
a function of the parameter pra for the cases of the zero
asymmetry M, = M} and the maximal asymmetry M;, =
10M,. The results are shown in fig. 4.
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Fig. 4. Evolution of the gap as a function of the parameter
pra. The upper pair of curves corresponds to the calculations
with no asymmetry in the MF approach (dashed curve) and
with boson loops (solid curve) and the lower pair of curves de-
scribes the results of calculations with the maximal asymmetry
when M, = 10M,.

One can see from fig. 4 that in the case of zero (or
small) asymmetry the corrections stemming from boson
loops are small at all values of the parameter pra con-
sidered here (down to pra = 0.94). On the contrary,
when M, = 10M, these corrections, being rather small
at pra > 2 become significant (~ 40%) when the value
of prpa decreases down to ppa ~ 1. We found that at
pra ~ 1 the effect of boson fluctuations becomes ~ 10%
already for My = 5M,. One can therefore conclude that
the regime of large mass asymmetries, which starts ap-
proximately at M, > 5M,, moderate scattering length
and/or the Fermi momenta is the one where the MF de-
scription becomes less accurate so that the calculations go-
ing beyond the MFA are needed. One might expect that
the deviation from the mean-field results could even be
stronger in a general case of a large mass asymmetry and
the mismatched Fermi surfaces but the detailed conclu-
sion can only be drawn after the actual calculations are
performed.

We were not able to follow the evolution of the system
at small gap (or small pra) because of the nonanalyticity
of the effective action in this case. This nonanalyticity
of the effective action can explicitly be demonstrated in
the mean-field approximation. The flow equations can be
solved analytically in this case and one can see from the
solution, which has a closed-form expression in terms of
an associated Legendre function, P/"(y) at k = 0, that the
fermion loops contain a term ¢f¢log(¢f ). It remains to
be seen whether, within the given ansatz, the full solution
of the system of the partial differential equations for the
effective potential and running couplings is required to
trace the evolution of the system in the case of small gaps.
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In summary, we have studied the pairing effect for the
asymmetric fermion matter with two fermion species as a
function of fermion mass asymmetry. We found that re-
gardless of the size of the fermion mass asymmetry the
boson loop corrections are small at large enough values
of pra so that the MFA provides a consistent description
of the pairing effect in this case. However, when pra ~ 1
these corrections become significant at large asymmetries
(M > 5M,) making the MFA inadequate. In this case
it seems to be necessary to go beyond the mean-field de-
scription.

There are several ways where this approach can fur-
ther be developed. In the case of asymmetric systems the
next natural step would be to consider the case of the mis-
matched Fermi surfaces taking into account the possibility
of formation of Sarma [7], mixed [8,9] and/or LOFF [10]
phases, exploring the importance of the boson loop for
the stability of those phases and applying the approach
to the real physical systems, for example fermionic atoms.
Work in this direction is in progress. The other important
extension of this approach would be to take into account
running of all couplings of the average effective action, use
different types of cutoff function, preferably the smooth
one and include both particle-hole channel and long-range
forces. The three-body force effects [11], when the corre-
lated pair interact with the unpaired fermion may also be
important, especially for nondilute systems.

The European Physical Journal A
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